{а}дон Хахам (xaxam) wrote,
{а}дон Хахам
xaxam

Это вам не пятизначные числа в уме перемножать!

Великий диофантер

Сколько пирожков может съесть один человек на голодный желудок диофантовых уравнений может решить за три месяца один математик? И так, чтобы решение каждого занимало целую статью, опубликованную в peer review journal?
B. Sroysang
ON THE DIOPHANTINE EQUATION $7^x + 31^y = z^2$
B. Sroysang
ON TWO DIOPHANTINE EQUATIONS
$7^x + 19^y = z^2$ and $7^x + 91^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $483^x + 485^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $5^x + 43^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $5^x + 63^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $323^x + 325^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $46^x + 64^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $143^x + 145^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $3^x + 45^y = z^2$
B. Sroysang
More on the Diophantine equation $3^x + 85^y = z^2$
B. Sroysang
MORE ON THE DIOPHANTINE EQUATION $4^x + 10^y = z^2$
B. Sroysang
MORE ON THE DIOPHANTINE EQUATION $8^x + 59^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $131^x + 133^y = z^2$
B. Sroysang
ON THE DIOPHANTINE EQUATION $8^x + 13^y = z^2$


И это только за 2014 год и только в одном журнале!! А полный список публикаций математического гения из содержит (на сегодняшнее утро) 78 наименований. Надо отметить, что в Thammasat University  (447 место в мировом рейтинге) работают очень суровые люди: с такой научной продуктивностью юный гений - пока только ассистент. Сколько же нужно работать, чтобы стать в этом университете хотя бы доцентом?!

Update. Ох ты ж ё.....ь... Он, оказывается, аналитик ещё покруче, чем числовик!
Но уже в другом журнале:

Banyat Sroysang
Three inequalities for the incomplete polygamma function
Math.Aeterna,Vol.4, 2014, no. 2, 119 - 122

Banyat Sroysang
More on some inequalities for the digamma function
Math.Aeterna,Vol.4, 2014, no. 2, 123 - 126

Banyat Sroysang
Inequalities for the k-th derivative of the incomplete exponential integral function
Math.Aeterna,Vol.4, 2014, no. 2, 127 - 130

Banyat Sroysang
More on some inequalities for the incomplete exponential integral function
Math.Aeterna,Vol.4, 2014, no. 2, 131 - 134

Banyat Sroysang
On the n-th Derivative of the Incomplete Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 1, 9 - 12

Banyat Sroysang
On the Product of the Gamma Function and the Riemann Zeta Function
Math.Aeterna,Vol.3, 2013, no. 1, 13 - 16

Banyat Sroysang
Three Inequalities for the Incomplete Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 1, 17 - 20

Banyat Sroysang
Two Inequalities for the Riemann Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 1, 21 - 24

Banyat Sroysang
A New Inequalities for the Riemann Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 10, 853 - 856

Banyat Sroysang
More on the Product of the Gamma Function and the Riemann Zeta Function
Math.Aeterna,Vol.3, 2013, no. 10, 857 - 860

Banyat Sroysang
Some inequalities for the n-th Derivative of the Incomplete Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 10, 861 - 864

Banyat Sroysang
Some New Inequalities for the Incomplete Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 10, 865 - 868

Banyat Sroysang
Inequalities for the incomplete beta function
Math.Aeterna,Vol.3, 2013, no. 4, 241 - 244

Banyat Sroysang
Inequalities for the incomplete gamma function
Math.Aeterna,Vol.3, 2013, no. 4, 245 - 248

Banyat Sroysang
Inequalities for the polygamma function
Math.Aeterna,Vol.3, 2013, no. 4, 249 - 252

Banyat Sroysang
Three inequalities for the digamma function
Math.Aeterna,Vol.3, 2013, no. 4, 253 - 256

Banyat Sroysang
A study on concave functions
Math.Aeterna,Vol.3, 2013, no. 5, 381 - 384

Banyat Sroysang
A study on convex functions
Math.Aeterna,Vol.3, 2013, no. 5, 385 - 388

Banyat Sroysang
A study on logarithmically concave functions
Math.Aeterna,Vol.3, 2013, no. 5, 389 - 392

Banyat Sroysang
A study on logarithmically convex functions
Math.Aeterna,Vol.3, 2013, no. 5, 393 - 396

Banyat Sroysang
A Generalization of Some Integral Inequalities Similar to Hardy’s Inequality
Math.Aeterna,Vol.3, 2013, no. 7, 593 - 596

Banyat Sroysang
More on Reverses of Minkowski’s Integral Inequality
Math.Aeterna,Vol.3, 2013, no. 7, 597 - 600

Banyat Sroysang, Paratat Bejrakarbum, Thanaboon Apivatnodom and Tuangsit Chunwaree
A remark on the ass and mule problem
Math.Aeterna,Vol.3, 2013, no. 10, 849 - 852

Banyat Sroysang
A New Inequalities for the Riemann Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 10, 853 - 856

Banyat Sroysang
More on the Product of the Gamma Function and the Riemann Zeta Function
Math.Aeterna,Vol.3, 2013, no. 10, 857 - 860

Banyat Sroysang
Some inequalities for the n-th Derivative of the Incomplete Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 10, 861 - 864

Banyat Sroysang
Some New Inequalities for the Incomplete Zeta Functions
Math.Aeterna,Vol.3, 2013, no. 10, 865 - 868




♣ Когда вы не сможете прочесть эту надпись здесь, вы сможете всегда её прочесть тут. А Оккам пусть бреется сам своей бритвой.

Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 54 comments